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SUMMARY 

Nondimensional temperature distributions for 
transient radial heat conduction through$nite hollow 
cylinders and onedimensional heat conduction in 
slabs of jinate thickness are presented an graphical 
form for a range of heat input. The solutions are for 
radial heat conduction with heat transfer at the inner 
radius or slab heat conduction with heat transfer at 
one boundary. In both types of conduction it is 
assumed that the boundary opposite the heat-transfer 
surjace is thermally insulated. The radial solutions 
cover a range of dimensionless radius ratios. The 
ma.terial is assumed to be homogeneous, and the ph ys- 
ical properties are considered invariant with tempera- 
ture. It is required that the heat-transfer coe$lcient 
and gas recovery temperature have quasi-steady- 
state values and the heat capacitance material 
temperature be essentially uniform at the start of 
heat addition. The solutions were obtained by means 
of difJerence equations and may be used for cooling 
as well as heating problems. These nondimensional 
solutions eliminate the need for obtaining solutions 
for each digerent material, heat-transjer coefiient, 
gas temperature, and initial material temperature. 
The range of variables should be adequate to cover 
rocket and missile calculations where a material is 
u,tilized ox a heat capacitor. 

INTRODUCTION 

To the authors’ knowledge, no solutions to the 
equation for transient radial heat conduction in 
a hollow cylinder with heat transfer at the inner 
radius and thermal insulation at the outer radius 
are available in the literature. Presumably this 
is due to the extreme labor involved in obtaining 

the closed-form solution in terms of Bessel func- 
tions. It was felt that these answers would be 
desirable for some types of rocket and missile 
heat-transfer calculations. Also, considering the 
accuracy of some of the assumptions often neces- 
sary in this field, it was felt that solutions of the 
difference equation would be sufhciently accurate 
for many engineering purposes. All of the results 
presented herein were obtained in a few days on 
a high-speed digital computer. 

The case of one-dimensional heat conduction in 
a slab with heat transfer at one boundary and 
thermal insulation on the opposite boundary has 
been presented in the literature and may be found 
in graphical form in references 1 to 3. Solutions 
for this case were readily obtained on the comput- 
ing machine by a slight modification of the differ- 
ence equation for radial heat conduction and are 
presented as additions to the other information. 

The range of variables covered should be ade- 
quate for most rocket and missile applications 
where a material may be used as a heat capacitor. 

SYMBOLS 

A heat-flow area, sq ft 
a nondimensional parameter, AR2/2Ar 

k 
specific heat of material, Btu/(lb)(“R) 
nondimensional heat-transfer parame- 

ter, hr,/k 
h convective heat-transfer coefficient, 

BWW bq ft) (“R) 
k thermal coeflicient of conductivity of 

material, Btu/(hr) (ft) (“R) 
L length of heat-flow path in slab, ft 
M factor for extending range of variables 
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number of AT increments 
number of AR increments 
heat-flow rate/unit area, Btu/(hr) (sq ft) 
nondimensional radius, Tlri: 
radius, ft 
temperature, “R 
time, hr 
nondimensional distance, x/x* 
Cartesian coordinates, ft 
coe&ient of thermal diffusivity, kJpc, 

sq ft/hr 
circumferential measure, radians 
material density, lb/cu ft 
nondimensional time, &IT: or at/x: as 

applicable 
nondimensional temperature ratio. 

- (T- TNT,- To) 
Subscripts : 
e exterior (insulated surface) of material 
9 gas or adiabatic wall 
i interior (heat-addition surface) of 

material 
n value of nondimensional temperature 

at m=r/Ar time increments 
n value of nondimensional temperature 

at n.=(R-l)/AR or n=(X-l)/AX 
distance increments from heat- 
addition surface 

0 value at start of heating (t=O) 
1 solution 1 
2 solution 2 

where (Y is the coefficient of diffusivity (k/PC). In 
many applications, for example in rocket work, it 
may be su&iently accurate to assume that heat 
flows only in the radial direction. It might also 
be a fair approximation to say that the material 
temperature is uniform at the start of heat addition 
and heat is added at the inner radius by a quasi- 
steady-state heat-transfer coeflicient and driving 
temperature. In high-velocity flow the driving 
temperature is usually considered to be the adi- 
abatic wall or recovery temperature, which is 
defined as the gas stream static temperature plus 
the product of the recovery factor and the dynamic 
temperature increase. With these assumptions, 
equation (2) simplifies to 

bT -=a 
at (gg+i$) 

with the boundary conditions, 

q&dT aT =h(T,-T) at r=T, 

bT -=O 
br at r=r, 

T= To at 1=0 for all r 

Equation (3) may be made nondimensional by 
making a change of variables with the followin,r 
dimensionless parameters : 

SOLUTION OF EQUATIONS 

The general form of the transient heat- 
conduction equation with assumed constant mate- 
rial property values (ref. 4) and no beat generation 
may be w-ritten in vector notation as 

The resulting equation is 

The final form of the equation depends upon the 
type of coordinate system selected that is most 
suitable to the physical situation. 

SOLUTION OF RADIAL-HEAT-CONDUCTION EQUATION 

The expression for equation (1) in cylindrical 
coordinate system is 

(2) 

(4) 

(5) 
This equation can be considered as the formal 
limit, as the increments AR=Ar/r, and AT= 
aA.1jrf tend to zero, of the difference equation 
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where m is the number of AT increments, and n is 
the number of AR increments. The difference 
equation may also be written ss 

If a=AR2J2Ar and it is realized that R=R& 
nAR=l+nAR, the solution for 9 at ~=(m+l)Ar 
in terms of 9 at T=rnAT is 

AR 
+4u(l+nAR) h%wz+1- ‘Pm.n-1) (7) 

where n ranges from 1 to n,- l= (rePi> - 1 _ 1 
AR 

-R--l 1 
-aR- . 

The inner-radius boundary condition relevant 
to the difference-equation formulation would be 
of the form 

h(T,-Tm,,)=-k Tm.l;rTm.o) ( 
Using the nondimensional parameters of equation 
(4) together with the additional nondimensional 
heat-transfer parameter, H=hr,/k, this equation 
may be expressed as 

The material is assumed to be insulated at the 
exterior radius T,, and it may be assumed that the 
heat that reaches the last increment of material 
serves to raise the temperature of this increment. 
Mathematically, this may be stated as 

dT bT abT dT 
-kA z=pcA~r z or -- -=_ AT &r at 

Using the nondimensional parameters, the 
exterior-radius b0undar.y condition relevant to the 
difference-equation formulation would be of the 
form 

1 
( > 

1 
%z+l.n,= l-Fa (P”.ne+~ Vm.ne-l (9) 

where R,=r,/r,=1+n,AR or n, =(R,--II/AR and 

a=AR2/2Ar. 

The solution for the transient radial-heat- 
conduction problem can be obtained by use of equa- 
tions (7), (s), and (9) for any selected values of 
nondimensional heat-transfer parameter H and 
exterior to interior radius ratio Re=re/ri. 

Calculations were made on a high-speed digital 
computer using the IPIAC coding system. This 
system makes use of two-word floating point 
arithmetic of over ten significant figures calcula- 
tion accuracy with an average multiplication or 
addition taking 1 millisecond. The interrupt 
feature of the computer saves time on output of 
results, so that a case with 30 increments in R and 
5000 steps of integration required 25 minutes to 
get 1100 numbers of output. Without the in- 
terrupt feature, the punching of paper tape would 
have required another 5 minutes. The longest 
case computed for this presentation (80 incre- 
ments in R, 10,000 steps in T) required approxi- 
mately 3 hours of calculation.. 

SOLUTION OF SLAB-HEAT-CONDUCTION EQUATION 

In Cartesian coordinate system, equation (1) 
can be expressed as 

bT -= 
at -($g+$+g) 

If the heat is assumed to flow only in the 
x-direction perpendicular to the heat-transfer 
surface in a rectangular slab with all other surfaces 
thermally insulated, this equation and the ap- 
propriate boundary conditions may be stated as 

bT b2T 
at uax2 

q=-kg=h(T,-T) at x=x, 

at x=x, 

(10) 

T= To at t =0 for all 2 

where x is measured from an arbitrary reference 
point, xi units from the heat-transfer surface. 

Equation (10) may be nondimensionalized by 
changing variables with the following parameters: 

at q-F--- 
X: 
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and 

x=; 
1 

with the resulting equation 

aQ sQ 
57ax2 

This equation can be considered as the formal 
limit, as the increments AX=x/x, and AT=aAt/x:! 
tend to zero, of the difference equation, 

Pmf1.n-- 
- Qm.n+l+Qnw-l+( lA& 

2a 
(11) 

where a=AX2/2Ar. Equation (11) is identical to 
equation (7) with the last term on the right omitted. 
Again, the values of n in equation (11) range from 
1 to n -I= (xel4-1-1=Xe-l e AX 

--1. Thebound- 
AX 

ary conditions at xi and x, are of identical form as 
in the radial-heat-conduction case. Therefore, 
appropriate nondimensionalized difference equa- 
tions of the boundary conditions are 

HAX+Q~ .I 
Qn-o= l+HAX (12) 

and 

Qm+l ,ne= 
( > 

1-k Qm.n,+& Qm.n,--I 03) 

where Xe=r.JXi= 1 j-&AX or n,= (X,- l)/AX. 
The solution for the transient slab-heat- 

conduction problem can be obtained by use of 
equations (ll), (12), and (13). It may be noted 
that equation (11) differs from equations (6) and 
(7) in that X does not appear in the solution which 
permits the use of xi as an arbitrary dimension 
providing it is used in the determination of T, X, 
and X,. 

After solutions were obtained for the slab-heat- 
flow problem, the results were converted to more 
conventional parameters by the following equa- 
tions : 

at 
p=(XeLl)2 

x X-l -=- 
L X,-l 

‘+=H(X,--1) 

where x is the distance in the direction of heat 
flow from the heated surface in a slab of length 
L, and where the temperature is computed at 
time t. 

Results for the slab-heat-conduction calcula- 
tions were obtainable by omitting the last term 
from equation (7) in the machine program for the 
radial-heat-flow solution. 

RANGE OF VARIABLES 

A value of a= 1.25=AR2/2Ar was used for all 
calculations. Reference 5 indicates that, for the 
slab case, a 2 1 is required to guarantee stability 
of the solution. Seven values of the nondimen- 
sional heat-transfer coefficient H were used for 
the radial-heat-conduction calculations. They 
were 0.2, 0.5, 1 .l, 2, 5, 10, and 20. Eight values 
of the outside to the inside radius ratio Re=re/ri 
were used, but not all were used with every heat- 
transfer value. The following table summarizes 
the cases computed. The value listed is the 
upper limit of the nondimensional time T com- 
puted : 

R, 

1. 1 
1. 2 
1. 3 
1. 4 
2. 0 
2. 5 
3. 0 
4. 0 

H 
--~-____~ --_--- 

0.2 ) 0.5 ) 1.1 ) 2 ) 5 ) 10 ) 20 
_-_-~--__-- -.- ----- 

--- 

5 
5 
5 
5 
5 

--_ 

0. 1 
5 
5 
5 
5 

0. 1 
5 
5 
5 
5 

T 

0. 1 
. 1 
.I 

-_- 
_-- 
_-_ 
_-- 
--_ 

0. 05 
.05 
.05 

A study of the range of variables needed indi- 
cated that the ones used would be adequate to 
cover most rocket and missile work where a ma- 
terial is utilized as a heat capacitor. The nondi- 
mensional temperature parameter Q rises Very 

rapidly Then small values of R, are used along 
with high values of the heat-transfer parameter H. 
Therefore, only a small range of r need be com- 
puted before Q becomes very close to 1.0. Since 
the region of interest is at the lower r for these 
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csses, the computations were stopped at the 
values indicated by the table. 

Cases that ran to an upper limit of 7 equal to 5 
used a AR interval of 0.05. To keep the compu- 
tational details comparable, cases that ran to 
upper limits of r=O.l and 0.05 used a AR interval 
equal to 0.005. 

Applications of these computations to large 
rockets indicated that the heat-transfer parameter 
H would be high and the value of the outside to 
inside radius R, wouldbe;Jow or close to 1.0. If 
equation (5) is examinedjfor values of R, close to 
unity, one sees that l/R may be considered ap- 
proximately equal to 1.0 for all values of R. Con- 
sequently, the results of the case for R,= 1.1 could 
be extended to new cases by using the following 
multiplying factor M: 

H,=MH, 

r2=r1JM2 

For minimum error, the extension should not be 
attempted for cases where R, is higher than 1 .l. 
A check of the accuracy was made by extending 
the computed values for HI=10 and R,,1=l.2 to 
Hz=20 and R,,z=l.l (i.e., M=2) and comparing 
this with the calculated results for the second 
case. This comparison is illustrated in figure 1. 
The extension equations were considered to be 
accurate enough that no solutions were carried 
out for H greater than 20 and R, less than 1.1. 

RESULTS 

Whenever a solution to a problem is obtained 
by using a finite-difference equation, the accuracy 
of the solution depends upon the size of the incre- 
ments used and how accurately the approxima- 
tions for the derivatives represent the true case. 
As a qualitative check of the radial-heat-conduction 
results, comparisons were made with closed- 
form solutions presented in reference 6. These 
solutions were made for the infinite material case; 
therefore, the comparisons hold only for the period 
of time when the outer boundary has experienced 
no change in temperature. 

Figure 2 shows the comparison between the 
closed-form solution for infinite material and the 
solution as obtained from equations (7), (8), and 

t a H= 10, R, = I .2 converted to above 
l 1 

Nondimensional radius, R = r/f; 
. 

FICUBE l.-Comparison of solution using multiplying 
factors and solution using difference equations. 

(9) for a nondimensional heat-transfer parameter 
H equal to 0.2 and an outside to inside radius 
ratio R, equal to 4.0. The solution should dupli- 
cate the closed-form solution up to the nondimen- 
sional time r equal to 0.6, because the outer 
boundary (R=4.0) has experienced very little 
change in temperature up to this value of r and 
thus corresponds to the case for infinite material. 

Since the results from reference 6 are given in 
graphical form with a very rough grid and also 
because the two cases are not quite comparable, 
no quantitative judgment as to accuracy will be 
made. The trends at this early time, for which 
the solutions are least accurate, indicate that the 
answers are sufhciently good for most engineering 
purposes. Reference 7 gives the nondimensional 
temperature distribution for the one-dimensional 
heat-conduction case in a finite material in the 
form of an infinite series. Using the first six 
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0 
Nondimensionol time, T 

FIGURE 2.-Comparison of closed-form solution for infinite 
materiai and solution by difference equations for radial 
heat flow. 

terms of this series-for x/L=O.2 and for the range 
of 0.2ShL/kS6, the results from the finite- 
difference equations agree within approximately 5 
percent at a value of at/L2=0.017, within approxi- 
mately 1 percent at a value of at/L2=0.5, and 
within approximately 0.2 percent at at/L’=l.O. 
Since, in many cases, temperatures of the gas and 
heat-transfer coefhcients cannot be determined 
with accuracies greater than this, the increments 
selected were considered to be small enough. 
Also, material properties may vary appreciably 
with temperature, so that any solutions to the 
linear equations are in themselves approximations. 
Further reduction of the material and time incre- 
ments causes the machine tune for calculations to 
be greatly increased and poses machine storage 
problems. 

RADIAL HEAT CONDUCTION 

Plots of the nondimensional temperature 9 
against the nondimensional time T for values of 
radius ratio R from 1.0 to IL are presented in 
figure 3 for all the cases indicated in the preceding 
table. 

SLAB HEAT CONDUCTION 

The calculations for the slab-heat-conduction 
problems were carried out for the cases in the 
preceding table, where the upper Limit of 7 was 
equal to 5.0, with X, replacing R, in the table. 

Plots are presented in two ways for the slab- 
heat-conduction solutions. Figure 4 presents plots 
of Q against at/L2 from x/L=0 to 1.0 for values 
of hL/k equal to 0.2, 0.5, 1.1, 2.0, 4.0, and 6.0. 
Figure 5 presents plots of cp a.gainst hL/k for at/L2 
from 0.0125 to 1.2 for values of x/L equal to 0, 
6.2, 0.4, 0.6, 0.8, and 1.0. 

SOME APPLICATIONS FOR THESE SOLUTIONS 

Figure 4 gives the time-temperature relations 
for any point in a slab of material (where the heat 
flow is only in one direction) for various values of 
the nondimensiona. heat-transfer parameter hL/k. 
For example, if an insulated slab or constant- 
diameter rod of known material and initial tem- 
perature To has heat applied to the uninsulated 
end, and the time for the other end of the mate- 
rial to reach a certam temperature is required, 
this type of plot would be very useful. Estimates 
for the heat-transfer coefhcient h and the adia- 
batic wall temperature T, would first be made. 
Then,- knowing the material properties (a and k) 
against temperature, the nondimensional pa.rame- 
ters p and hL/k could be computed. Entering the 
correct plot (hL/k) with the value Q and x/L= 1.0, 
one can read a vaIue of at/L” and finally compute 
a value of time t. 

The graphs may be used’for solving cooling as 
well as heating problems. 

The plots of Q against hL/k for various values 
of x/L (fig. 5) can be used to find the heat-transfer 
coefhcient h. For example, a constant-diameter 
rod of known material can be imbedded in a rocket 
nozzle in such a way that heat flow is along the 
axis of the rod with insulated sides and outer end. 
A thermocouple can be used to give the time- 
temperature relation for a given position in the 
rod for a rocket firing run. The a.diabatic wall 
temperature T, can be computed from rocket per- 
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formance, and the initial temperature of the rod 
To is known from the thermocouple readings before 
firing, enabling calculation of the nondimensional 
temperature Q. Then, knowing the material prop- 
erties against temperature and the time of the 
thermocouple reading, at/L2 can be computed. 
Entering the correct plot (s/L known) with values 
of cp and at/L2, one can read hL/k. Again, know- 
ing the length (L) and material property (k), one 
can compute the heat-transfer coefbcient h. 

The properties of materials (k. p, and c) may 
vary appreciably with temperature, and the prob- 
lem arises concerning which temperature in the 
material should be used in the evaluation. Refer- 
ence 8 shows that the material properties for 
simple metals for this type of computation should 
be evaluated at a temperature that is about one- 
fourth of the maximum if the initial temperature 

is zero, or at 
( 

T”“=l- To+ To) if the initial tem- - 

perature is nonzero. This may be due to the fact 
that the temperature for evaluating properties 
should be averaged for time and distance in the 
material. The factor 4 appears to be a rough 
approximation for this value. 

An iteration process might be needed to get the 
required accuracy if estimates used to start the 
problem are found to be quite inaccurate. As an 
illustration in the second example, the tempera- 
ture of the rod at x/L=0 is needed to estimate the 
material properties (2 and k. This value could be 
approximated; and, once a value of hL/k is ob- 
tained, one could enter the plot of Q against hL/k 
for xlL=O, using the hL/k and at/L2 computed, 
and see if the value of cp at x/L=0 gives a tem- 
perature close to the original estimate. If not, 
the process could be repeated until the desired 
convergence is obtained. 

In the design of a rocket nozzle where a mate- 
rial is to be utilized as a heat capacitor, the appro- 
priate radial heat-conduction solution (fig. 3) would 
be applicable at each axial station. To give the 
reader some feel for the nondimensional parame- 
ters used, two cases will be computed. 

In the following table are the assumptions used 
and the calculated values- arrived at by use of 
figures 3(a)(3) and 3(e)(4) for the throat of two 
rockets of different size. It was assumed that the 
wall material was graphite and it was necessary 
to find the firing duration, which is limited by the 

time required for the interior surface at the thror 
to reach 383OO R. 

Thrust, lb 
Adiabatic wall temperature, 

T., OR 
Initial graphite temperature, 

T,, “R 
Interior limiting temperature, 

T, “R 
Rocket chamber pressure, 

lb/sq in. abs 
Thrust coefficient 
Rocket throat radius, I;, in. 
Exterior graphite radius at 

throat, r., in. 
Material thickness, rs-ri, in. 
Heat-transfer coefficient, h, 

Btu/(hr) (sq ft) (“R) 
Graphite coefficient of dif- 

fusivity, LI, sq ft/hr 
Graphite thermal conduc- 

tivity, k, Btu/(hr) (ft) (“R) 
H 
R. 
R (for limiting temperature) 
(D (limiting value) 
7 
Firing duration, t, set 

Case I Case II 

600,000 6000 

6030 6030 

530 530 

3830 3830 

300 
1. 347 
21. 74 

300 
1. 347 
2. 17 

23. 91 4.34 
2. 17 2. 17 

638 638 

1. 18 1. 18 

57. 8 57. 8 
20 2 

I. 1 2 
1. 0 1. 0 
0. 6 0. 6 

0.003 0. 45 
30 40. 5 

No comparisons between cases I and II should 
be drawn, because the local heat-transfer coefli- 
Gent h is a function of the rocket radius, and these 
cases were given only to illustrate the nondimen- 
sional parameters. 

By means of cross-plotting, curves of (p against 
H with 7 as a parameter for fixed values of R and 
It, can be made similar to the slab case for 
evaluating h from experimental data from a 
circumferen tially and axially segmented rocket 
nozzle or chamber. 

CONCLUDING REMARKS 

Nondimensional-temperature distributions for 
transient radial heat conduction through hollow 
cylinders and one-dimensional heat conduction 
in slabs of &rite thickness have been presented in 
graphical form for a range of heat input. The 
solutions are for radial heat flow with heat transfer 
at the inner radius or slab heat flow with heat 
transfer at one boundary. In both types of con- 
duction it was assumed that the boundary opposite 
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the heat-transfer surface is thermally insulated. 
The radial solutions cover a range of dimensionless 
radius ratios. The material is assumed to, be 
homogeneous, and the physical properties are 
considered invariable with temperature. The 
solutions were obtained by means of dif3erence 
equations, and calculations were made on a high- 
speed digital computer. 

Some examples of uses for the curves might be as 
follows for any type of material: 

1. The temperature distribution through a slab 
or hollow cylinder can be determined for known 
heat-transfer coeficient and adiabatic wall tem- 
perature. 

2. Heat-transfer coefficients can be obtained 
from temperature measurements made at Imown 
times. 

3. Heat-addition duration may be determined 
for given material thicknesses, heat-transfer co- 
efficients, and limiting inner-wall temperatures. 

4. Material thicknesses required for limiting 
wall temperatures and heat-addition duration 
may be obtained for known heat-transfer coefh- 
cients. This might be used in a weight analysis 
where various materials are used. 

5. The graphs may be used for solving cooling 
as well as heating problems. 

6. Thermal stresses arising during heating or 
cooling could be obtained from the temperature 
distribution through the material. 

7. The solutions migbt be applicable to any 
diffusion process other than heat diffusion that 

satisfies the type of boundary conditions used 
herein. _ 

Restrictions upon the use of these solutions 
are that there be no heat flow at any boundary 
except at the heat input surface, and the heat- 
transfer coefficient and driving temperature have 
quasi-steady-state values. The heat-capacitance 
material temperature must be essentially uniform 
at the start of heat addition. 
LEWISRESEARCH CENTER 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
CLEVELAND,OFIIO,JU~~Z~, 1959 
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Nondimensional time, r 

(l)H=5.0. 
(a) R.= 1.1. 

FIGURE 3.-Time-temperature relations for various radius ratios R. and nondimensional heat-transfer coefficients H for 
radial heat flow in a cylinder (L ar g er copies of all parts of figure 3 are available from NASA, Washington25, D.C.) 



Nondimensionol lime, T 

(2) H= 10.0. 
(a) Continued. R,=l.l. 

FIOURE 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 



Nondimensional time, T 

(3) H=20.0. 
(a) Concluded. R,= 1.1. 

FIQTJRP~ 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 
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(1) 2x=5.0. 
(b) R.=1.2. 

FIGURE 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer 
coefficients H for radial heat flow in a cylinder. 
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(2) H= 10.0. 

(b) Continued. R,=1.2, 
B’IOURE L-continued. Time-temperature relations for various radius ratios R, and nondimensionnl heat-transfer coefficients H for radial heat flow in a 2 

cylinder. I 



Nondimensionol time, T 

(3) H=20.0. 
(b) Concluded. l&=1.2. 

FIQURE 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 
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(c) R,=1.3. 
Frcmm 3 .-Continued. Time-temperature relations-for various radius ratios &‘and nondimensional heat-transfer coefficients H for radial heat flow in a 

cylinder. G 
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(2) H = 10.0. 
cc) Continued. I?,= 1.3. 

FIGURD 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder, 



Nondimensional time, r 

(3) H=20.0. 
(c)-Concluded. R.=1.3. 

FICKTRE 3.- Continued, Time-temperature relations for various radius ratios El. and nondimensional heat-transfer coeffiioients H for radial heat BOW in a 4 
cylinder. 
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Nondimensional time, T 

(1) H=0.2. 
(d) R.= 1.4. 

FIWRD a.--Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 



Nondimensionol time, T 

(2) H=0.5. 
(d) Continued. R.= 1.4. 

FIQURD 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer coefficients R for radial heat flow in a 
cylinder. 
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Nondimensional time, r 

(3) H=l.l. 
(d) Continued. R.= 1.4. 

FIQUREI 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 
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Nondimensionol time, T 

(4) H=2.0. 
.(d) Concluded. R.= 1.4. 

FIGURE 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer 
coefficients H for radial heat flow in a cylinder. 
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Nondimensionol time, z 

(1) H=O.2. 
(e) R.=2.0. 

FIGURE 3.-cohtinued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer 
coefficients H for radial heat flow in a cylinder. 
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(2) H=0.5. 3 

(e) Continued. R,=2.0. 
FI~URB S.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 

cylinder. 
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Nondimensional time, T 

(3) H=l.l. 
(e) Continued. R.=2.0. 

FICUJR~ 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 
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FIQU 3 S.-Coni 

(4) H=2.0. 
(e) Concluded. R,=2.0. 

;inued, Time-temperature relations for various radius ratios R, and nondimensional heat-transfer ooefficients H for radial heat 
cylinder. 

flow in 



(f) R.=2.5. 
FIQURN 3 .-Conitnued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 

cylinder. 



Nondimensionol time, T 

(2) H=O.S. 
(f) Continued. I&=2.6. 2 

FIQUREI 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer coefficients H for radial heat flow in a 8 
cylinder. 
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Nondimensional’ time, r 

(3)H=l.l. 

FIGURES 3 
(f) Continued. R,=2.5. 

.--Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
oylinder. 
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Nondimensional time, r 

(4) H=2.0. 
(f) Concluded. I&=2.5. 

h+ua~ 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 
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Nondimensionol time, T 

4 5 

(1) H=0.2. 
(g) R,=3.0. 

FIWJREI 3.-Continued. Time-temperature relations for various radius ratios R. and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. z 



(2) H=0.5. 
(g) Continued. I&=3.0. 

FIQTJR~ 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients ff for radial heat flow In a 
cylinder. 
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FIQTJ ‘RE 3.. -Con 

(3) H=l.l. 
(g) Continued. R.=3.0. 

.tinued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat 
cylinder. 
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Nondimensionol time, T 

2 
(4) H=2.0. 3 

(g) Concluded. R.=3.0. 
FIQURH 3.-Continued. Time-temperature relations for various radius ratios and R, nondimensional heat-transfer coefficients H for radial heat flow in a 

cylinder. 
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(1) H=0.2. 

FIQUREI 3.-Continued. 
(h) R,=4.0. 

Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H fix radihl heat 
cylinder. 
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Nondimensional time, T 

(2) H=0.5. 
(h) Continued. R.=4.0. 

FIQUR~ 37 Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 
cylinder. 

E 



kondimensionol time, ; 
$ 

(3) H=l.l. iI (h) Continued. R,=4.0. 
FIQUREI 3.-Continued. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients H for radial heat flow in a 

cylinder. 1 d 
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(4) H=2.0. 
(h) Concluded. R,=4.0. 

.oluded. Time-temperature relations for various radius ratios R, and nondimensional heat-transfer coefficients JJ for radial heat 
cylinder. 

flow in a 
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Nondimensional time, at/L* 

3.6 4.0 4.4 4.8 5.2 

(a) hL/k=O.L. 
:a 4.-Time-temperature relations for various nondimensional heat.transfer coefficients hL/k for one-dimensional heat flow in a slab. 

of all parts of figure 4 are available from NASA, Washington 25, D.C.) 
(Larger copies 



Nondimensional time, at/L2 

(b) hL/k=0.5. r3 
PI~URE 47 Continued. Time-temperature relations for various nondimensional heat-transfer coefficients hL/k for one-dimensional heat flow in a slab. $ 
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FIQURB 4 .--Continued. 
(c) hL/k=l.l. 

Time-temperature relations for various nondimensional heat-transfer coefficients hL/k for one-dimensional heat flow in a slqb, 



FIQUREI 

Nondimensional time, at/f2 

(d) hL/k=2.0. 
I.-Continued. Time-temperature relations for various nondimensional heat-transfer coefficients hL/k for one-dimensional heat flow in a 
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(e) hL/k=4.0. 
FIQURE 4.--Continued. Time-temperature relations for various nondimensional heat-transfer coefficients hL/k for one-dimensional heat flow in a slab. 
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Nondimensional time, at/L2 8 

(f) hL/k=6.0. z 
FIGURE 4.- Concluded. Time-temperature relations for various nondimensional heat-transfer coefficients hL/k for-one-dimensional-heat:flow in a slab. 3 
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Nondimensional heat- transfer coefficient, M./k 

(a) x/L=O. 
FIQURE 5.-Temperature-heattransfer-coefficient relations for various positions x/L in a slab with time at/L2 as a parameter. (Larger copies of all parts 

of figure 5 are available from NASA, Washington 25, D.C.) 
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Nondimensional heat- transfer coefficient, hL /k 

(b) z/L=O.2. 
L-Continued. Temperature-heat-transfer-coefficient relations for various positions x/L in a slab with time at/L* as a parameter, 



Nondimensional heat-transfer coefficient, 

bURE 5 
(c) x/L=0.4. 

.-Continued. Temperature-heat-transfer-coefficient relations for various positions x/L in a slab with time cd/L1 as a parameter, 
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Nondimensional heat-transfer coefficient, hL/k 

(d) s/L=O.6. 
,E 5.-Continued. Temperature-heatrtransfer-coefficient relations for various positions x/L in a slab with time at/L2 as a parameter. 

.O 



.9 

,8 

.7 

.6 

.5 

.4 

.3 

.2 

*I 
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Nondimensional heat-transfer coefficient, M/k 

(e) x/L=O.8. 
.??IQWW 5.--Continued. Temperature- heat-transfer-coefficient relations for various positions x/L in a slab with tLe al/L2 as a parameter, 
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(f) z/L= 1.0. 
FIGURE 5.-Concluded. Temperature-heat-transfer-coefficient relations for various positions x/L in a slab with time at/L2 as a parameter. 


